Bringing LIGO Science to the Masses

Gravitational-wave astronomy is now a reality.  In September 2015, the LIGO Scientific Collaboration made the first direct detection of gravitational waves from the collision of two black holes approximately one billion light years from Earth, and with masses approximately thirty times that of our Sun.  Eleven gravitational wave detections have since been made, including one coming from the collision of two neutron stars — dead stellar remnants with cores more dense than in the nucleus of an atom.  This latter observation allowed researchers to understand the interiors of these exotic objects in unprecedented ways, providing insight into the way nuclear physics works in regimes that cannot be created in terrestrial experiments.

But how do we know these exciting facts about the objects creating the gravitational waves in the first place?  This is done through a mathematical technique known as Bayesian parameter inference.  This allows complex and noisy data to be interpreted in terms of the underlying model that created the data in the first place.  For these gravitational-wave events, this parameter inference allowed us to calculate the masses of the merging black holes, the distance at which they merged, and the constituent properties of the neutron stars, among many other things.

Researches at Monash University have developed a new piece of software – adopted by the LIGO Collaboration – that will do parameter estimation on future gravitational-wave events.  The new software is designed to be easily adaptable and user friendly and is therefore targeted, not only at trained gravitational-wave astronomers, but also the broader scientific community who may want to dabble in this new and exciting field.

ADACS has taken this one step further by building an easy-to-use front-end graphical interface that allows the most novice of users to harness the power of Swinburne’s supercomputing facilities to analyse technical gravitational-wave data seamlessly through a web browser.  We anticipate this will be taken up by both professional gravitational-wave researchers and beginners alike.  

The interface allows users to analyse data by clicking through a series of easy-to-understand windows, ultimately launching a job on a local computer or a high-performance supercomputer.  Jobs are logged, easily searchable, and can be made publicly available at the users discretion.

Until now, gravitational-wave astronomy has been a niche science; available only to those who understand the complicated tools that allow for interpretations of noisy time-series of data in terms of astrophysical phenomena.  Monash researchers, together with the ADACS software support program, have brought gravitational-wave astronomy to the masses, allowing these complicated data to be analysed by relative novices and professionals alike with a few clicks of a button.” – Dr. Lasky, Monash University.

Bilby is currently undergoing internal review within the LIGO-VIRGO Collaboration (LVC) Parameter Estimation (PE) group and is on track to become the official PE code for LIGO. ADACS are currently working on the next phase of development of the Bilby user interface and workflow, as well as implementing LIGO user authentication.

The Bilby Interface welcome page
Configuring a new parameter estimation analysis
Viewing the results online

Related posts

GPU acceleration of gravitational-wave signal models

by Gregory Poole
4 years ago

Speeding-up Reionization with GPUs

by Lewis Lakerink
6 years ago

Optimising FRB searches using GPUs

by Gregory Poole
4 years ago
Exit mobile version